
ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK  |  KEVIN WAYNE

2.3  QUICKSORT

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts



2

Two classic sorting algorithms

Critical components in the world’s computational infrastructure.

・Full scientific understanding of their properties has enabled us

to develop them into practical system sorts.

・Quicksort honored as one of top 10 algorithms of 20th century

in science and engineering.

Mergesort.

・Java sort for objects.

・Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...

Quicksort.

・Java sort for primitive types. 

・C qsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

last lecture

this lecture



3

Quicksort t-shirt



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3  QUICKSORT



5

Quicksort

Basic plan.

・Shuffle the array.

・Partition so that, for some j 

– entry a[j] is in place

– no larger entry to the left of j

– no smaller entry to the right of j

・Sort each piece recursively.
Sir Charles Antony Richard Hoare

1980 Turing Award

Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E

K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S

E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X

not greater not less

partitioning item

input

shuffle

partition

sort left

sort right

result

Quicksort overview



6

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

lo

K R A T E L E P U I M Q C X O S

i j



7

Quicksort partitioning demo

Repeat until i and j pointers cross.

・Scan i from left to right so long as (a[i] < a[lo]).

・Scan j from right to left so long as (a[j] > a[lo]).

・Exchange a[i] with a[j].

When pointers cross.

・Exchange a[lo] with a[j].

lo

E C A I E K L P U T M Q R X O S

hij

partitioned!



8

Quicksort:  Java code for partitioning

private static int partition(Comparable[] a, int lo, int hi)
{
   int i = lo, j = hi+1;
   while (true)
   {
      while (less(a[++i], a[lo]))
         if (i == hi) break;

      while (less(a[lo], a[--j]))
         if (j == lo) break;
     
      if (i >= j) break;
      exch(a, i, j);
   }

   exch(a, lo, j);
   return j;
} 

swap with partitioning item

check if pointers cross

find item on right to swap

find item on left to swap

swap

return index of item now known to be in place

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview



9

Quicksort:  Java implementation

public class Quick
{
   private static int partition(Comparable[] a, int lo, int hi)
   {  /* see previous slide */  }

   public static void sort(Comparable[] a)
   {
      StdRandom.shuffle(a);
      sort(a, 0, a.length - 1);
   }

   private static void sort(Comparable[] a, int lo, int hi)
   {
      if (hi <= lo) return;
      int j = partition(a, lo, hi);
      sort(a, lo, j-1);
      sort(a, j+1, hi);
  }
} 

shuffle needed for 
performance guarantee

(stay tuned)



Quicksort trace

10

 lo   j  hi   0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
              Q  U  I  C  K  S  O  R  T  E  X  A  M  P  L  E
              K  R  A  T  E  L  E  P  U  I  M  Q  C  X  O  S 
  0   5  15   E  C  A  I  E  K  L  P  U  T  M  Q  R  X  O  S  
  0   3   4   E  C  A  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  0   2   2   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  0   0   1   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  1       1   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  4       4   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  6   6  15   A  C  E  E  I  K  L  P  U  T  M  Q  R  X  O  S  
  7   9  15   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
  7   7   8   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
  8       8   A  C  E  E  I  K  L  M  O  P  T  Q  R  X  U  S  
 10  13  15   A  C  E  E  I  K  L  M  O  P  S  Q  R  T  U  X  
 10  12  12   A  C  E  E  I  K  L  M  O  P  R  Q  S  T  U  X  
 10  11  11   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 10      10   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 14  14  15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X  
 15      15   A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X 
  
              A  C  E  E  I  K  L  M  O  P  Q  R  S  T  U  X 

no partition
 for subarrays

 of size 1

initial values

random shuffle

result

Quicksort trace (array contents after each partition)



Quicksort animation

11

http://www.sorting-algorithms.com/quick-sort

50 random items

in order

current subarray

algorithm position

not in order



12

Quicksort:  implementation details

Partitioning in-place.  Using an extra array makes partitioning easier

(and stable), but is not worth the cost.

Terminating the loop.  Testing whether the pointers cross is a bit trickier 

than it might seem.

Staying in bounds.  The (j == lo) test is redundant (why?),

but the (i == hi) test is not.

Preserving randomness.  Shuffling is needed for performance guarantee.

Equal keys.  When duplicates are present, it is (counter-intuitively) better

to stop on keys equal to the partitioning item's key.



13

Quicksort:  empirical analysis

Running time estimates:

・Home PC executes 108 compares/second.

・Supercomputer executes 1012 compares/second.

Lesson 1.  Good algorithms are better than supercomputers.

Lesson 2.  Great algorithms are better than good ones.

insertion sort (Ninsertion sort (Ninsertion sort (N2) mergesort (N log N)mergesort (N log N)mergesort (N log N) quicksort (N log N)quicksort (N log N)quicksort (N log N)

computer thousand million billion thousand million billion thousand million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant instant instant instant



14

Quicksort:  best-case analysis

Best case.  Number of compares is ~ N lg N.

random shuffle

initial values



Worst case.  Number of compares is ~ ½ N 2 .

15

Quicksort:  worst-case analysis

random shuffle

initial values



Proposition.  The average number of compares CN to quicksort an array of

N distinct keys is ~ 2N ln N (and the number of exchanges is ~ ⅓ N ln N).

Pf.  CN satisfies the recurrence C0 = C1 = 0 and for N  ≥  2:

・Multiply both sides by N and collect terms:

・Subtract this from the same equation for N - 1: 

・Rearrange terms and divide by N (N + 1):

16

Quicksort:  average-case analysis

CN

N + 1
=

CN�1

N
+

2
N + 1

NCN = N(N + 1) + 2(C0 + C1 + . . . + CN�1)

NCN � (N � 1)CN�1 = 2N + 2CN�1

CN = (N + 1) +

�
C0 + CN�1

N

�
+

�
C1 + CN�2

N

�
+ . . . +

�
CN�1 + C0

N

�
partitioning

partitioning probability

left right



CN

N + 1
=

CN�1

N
+

2
N + 1

=
CN�2

N � 1
+

2
N

+
2

N + 1

=
CN�3

N � 2
+

2
N � 1

+
2
N

+
2

N + 1

=
2
3

+
2
4

+
2
5

+ . . . +
2

N + 1

・Repeatedly apply above equation:

・Approximate sum by an integral:

・Finally, the desired result:

17

Quicksort:  average-case analysis

CN � 2(N + 1) lnN ⇥ 1.39N lg N

previous equation

CN = 2(N + 1)
✓

1
3

+
1
4

+
1
5

+ . . .

1
N + 1

◆

⇠ 2(N + 1)
Z N+1

3

1
x

dx

substitute previous equation



18

Quicksort:  summary of performance characteristics

Worst case.  Number of compares is quadratic.

・ N + (N - 1) + (N - 2)  + … + 1  ~  ½ N 2.

・More likely that your computer is struck by lightning bolt.

Average case.  Number of compares is ~ 1.39 N lg N.

・39% more compares than mergesort.

・But faster than mergesort in practice because of less data movement.

Random shuffle.

・Probabilistic guarantee against worst case.

・Basis for math model that can be validated with experiments.

Caveat emptor.  Many textbook implementations go quadratic if array

・Is sorted or reverse sorted.

・Has many duplicates (even if randomized!)



Proposition.  Quicksort is an in-place sorting algorithm.

Pf.

・Partitioning:  constant extra space.

・Depth of recursion:  logarithmic extra space (with high probability).

Proposition.  Quicksort is not stable.

Pf.

19

Quicksort properties

i j 0 1 2 3

B1 C1 C2 A1

1 3 B1 C1 C2 A1

1 3 B1 A1 C2 C1

0 1 A1 B1 C2 C1

can guarantee logarithmic depth by recurring
on smaller subarray before larger subarray



Insertion sort small subarrays.

・Even quicksort has too much overhead for tiny subarrays.

・Cutoff to insertion sort for ≈ 10 items.

・Note: could delay insertion sort until one pass at end.

 private static void sort(Comparable[] a, int lo, int hi)
 {
    if (hi <= lo + CUTOFF - 1)
    {
       Insertion.sort(a, lo, hi);
       return;
    }
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
 }

20

Quicksort:  practical improvements



21

Quicksort:  practical improvements

Median of sample.

・Best choice of pivot item = median.

・Estimate true median by taking median of sample.

・Median-of-3 (random) items.

 private static void sort(Comparable[] a, int lo, int hi)
 {
    if (hi <= lo) return;

    int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
    swap(a, lo, m);

    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
 }

~  12/7   N ln N compares (slightly fewer) 
~  12/35 N ln N exchanges (slightly more)



Quicksort with median-of-3 and cutoff to insertion sort:  visualization

22

partitioning element

Quicksort with median-of-3 partitioning and cutoff for small subarrays

input

result

result of
first partition

left subarray
partially sorted

both subarrays 
partially sorted



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3  QUICKSORT



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3  QUICKSORT



25

Selection

Goal.  Given an array of N items, find a kth smallest item.

Ex.  Min (k = 0), max (k = N - 1), median (k = N / 2).

Applications.

・Order statistics.

・Find the "top k."

Use theory as a guide.

・Easy N log N upper bound.  How?

・Easy N upper bound for k = 1, 2, 3.  How?

・Easy N lower bound.  Why?

Which is true?

・N log N lower bound?

・N upper bound?

is selection as hard as sorting?

is there a linear-time algorithm for each k?



Partition array so that:

・Entry a[j] is in place.

・No larger entry to the left of j.

・No smaller entry to the right of j.

Repeat in one subarray, depending on j; finished when j equals k.

public static Comparable select(Comparable[] a, int k)
{
    StdRandom.shuffle(a);
    int lo = 0, hi = a.length - 1;
    while (hi > lo)
    {
       int j = partition(a, lo, hi);
       if      (j < k) lo = j + 1;
       else if (j > k) hi = j - 1;
       else            return a[k];
    }
    return a[k];
}

26

Quick-select

i

! v" v

j

v

v

lo hi

lo hi

v

! v" v

j

before

during

after

Quicksort partitioning overview

if a[k] is here
set hi to j-1

if a[k] is here
set lo to j+1



27

Quick-select:  mathematical analysis

Proposition.  Quick-select takes linear time on average.

Pf sketch.

・Intuitively, each partitioning step splits array approximately in half:

N + N / 2 + N / 4 + … + 1  ~  2N compares.

・Formal analysis similar to quicksort analysis yields:

Remark.  Quick-select uses ~ ½ N 2 compares in the worst case, but

(as with quicksort) the random shuffle provides a probabilistic guarantee.

CN   =  2 N  + 2 k ln (N / k)  + 2 (N – k) ln (N / (N – k))

(2 + 2 ln 2) N  to find the median



Proposition.  [Blum, Floyd, Pratt, Rivest, Tarjan, 1973]  Compare-based 

selection algorithm whose worst-case running time is linear.

Remark.  But, constants are too high  ⇒  not used in practice.

Use theory as a guide.

・Still worthwhile to seek practical linear-time (worst-case) algorithm.

・Until one is discovered, use quick-select if you don’t need a full sort.
28

Theoretical context for selection

L

i

i
L

L

L

Time Bounds for Selection

bY .

Manuel Blum, Robert W. Floyd, Vaughan Watt,

Ronald L. Rive&, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of

n numbers is shown to be at most a linear function of n by analysis of

a new selection algorithm -- PICK. Specifically, no more than

5.4305 n comparisons are ever required. This bound is improved for

extreme values of i , and a new lower bound on the requisite number

of comparisons is also proved.

This work was supported by the National Science Foundation under grants
GJ-992 and GJ-33170X.

1



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3  QUICKSORT



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3  QUICKSORT



31

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.

・Sort population by age.

・Remove duplicates from mailing list.

・Sort job applicants by college attended.

 Typical characteristics of such applications.

・Huge array.

・Small number of key values.

Chicago  09:00:00
Phoenix  09:00:03
Houston  09:00:13
Chicago  09:00:59
Houston  09:01:10
Chicago  09:03:13
Seattle  09:10:11
Seattle  09:10:25
Phoenix  09:14:25
Chicago  09:19:32
Chicago  09:19:46
Chicago  09:21:05
Seattle  09:22:43
Seattle  09:22:54
Chicago  09:25:52
Chicago  09:35:21
Seattle  09:36:14
Phoenix  09:37:44

Chicago 09:00:00
Chicago 09:00:59
Chicago 09:03:13
Chicago 09:19:32
Chicago 09:19:46
Chicago 09:21:05
Chicago 09:25:52
Chicago 09:35:21
Houston 09:00:13
Houston 09:01:10
Phoenix 09:00:03
Phoenix 09:14:25
Phoenix 09:37:44
Seattle 09:10:11
Seattle 09:10:25
Seattle 09:22:43
Seattle 09:22:54
Seattle 09:36:14

Chicago 09:25:52
Chicago 09:03:13
Chicago 09:21:05
Chicago 09:19:46
Chicago 09:19:32
Chicago 09:00:00
Chicago 09:35:21
Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

Stability when sorting on a second key

sorted

sorted by time sorted by city (unstable) sorted by city (stable)

NOT
sorted

key



32

Duplicate keys

Mergesort with duplicate keys.  Between ½ N lg N and N lg N compares.

Quicksort with duplicate keys.

・Algorithm goes quadratic unless partitioning stops on equal keys!

・1990s C user found this defect in qsort().

several textbook and system 
implementation also have this defect

S T O P O N E Q U A L K E Y S

swap if we don't stop 
on equal keys

if we stop on 
equal keys



Duplicate keys:  the problem

Mistake.  Put all items equal to the partitioning item on one side.

Consequence.   ~ ½ N 2 compares when all keys equal.

Recommended.  Stop scans on items equal to the partitioning item.

Consequence.  ~ N lg N compares when all keys equal.

Desirable.  Put all items equal to the partitioning item in place.

33

B A A B A B B B C C C        A A A A A A A A A A A

B A A B A B C C B C B        A A A A A A A A A A A

A A A B B B B B C C C        A A A A A A A A A A A



Goal.  Partition array into 3 parts so that:

・Entries between lt and gt equal to partition item v.

・No larger entries to left of lt.

・No smaller entries to right of gt.

Dutch national flag problem.  [Edsger Dijkstra]

・Conventional wisdom until mid 1990s:  not worth doing.

・New approach discovered when fixing mistake in C library qsort().

・Now incorporated into qsort() and Java system sort.
34

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning



・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt

– (a[i] == v):  increment i

35

Dijkstra 3-way partitioning demo

lo

P A B X W P P V P D P C Y Z

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

i

invariant



・Let v be partitioning item a[lo].

・Scan i from left to right.

– (a[i]  < v):  exchange a[lt] with a[i]; increment both lt and i

– (a[i]  > v):  exchange a[gt] with a[i]; decrement gt

– (a[i] == v):  increment i

36

Dijkstra 3-way partitioning demo

lo

A B C D P P P P P V W Y Z X

hi

lt gt

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning

invariant



37

Dijkstra's 3-way partitioning:  trace

                              a[]
lt   i  gt    0  1  2  3  4  5  6  7  8  9 10 11 
 0   0  11    R  B  W  W  R  W  B  R  R  W  B  R
 0   1  11    R  B  W  W  R  W  B  R  R  W  B  R
 1   2  11    B  R  W  W  R  W  B  R  R  W  B  R
 1   2  10    B  R  R  W  R  W  B  R  R  W  B  W
 1   3  10    B  R  R  W  R  W  B  R  R  W  B  W
 1   3   9    B  R  R  B  R  W  B  R  R  W  W  W
 2   4   9    B  B  R  R  R  W  B  R  R  W  W  W
 2   5   9    B  B  R  R  R  W  B  R  R  W  W  W
 2   5   8    B  B  R  R  R  W  B  R  R  W  W  W
 2   5   7    B  B  R  R  R  R  B  R  W  W  W  W
 2   6   7    B  B  R  R  R  R  B  R  W  W  W  W
 3   7   7    B  B  B  R  R  R  R  R  W  W  W  W
 3   8   7    B  B  B  R  R  R  R  R  W  W  W  W
 3   8   7    B  B  B  R  R  R  R  R  W  W  W  W

v

3-way partitioning trace (array contents after each loop iteration)



private static void sort(Comparable[] a, int lo, int hi) 
{ 
   if (hi <= lo) return; 
   int lt = lo, gt = hi;
   Comparable v = a[lo]; 
   int i = lo; 
   while (i <= gt) 
   { 
      int cmp = a[i].compareTo(v); 
      if      (cmp < 0) exch(a, lt++, i++); 
      else if (cmp > 0) exch(a, i, gt--); 
      else              i++; 
   }

   sort(a, lo, lt - 1); 
   sort(a, gt + 1, hi); 
} 

38

3-way quicksort:  Java implementation

lt

<v =v >v

gti

v

>v<v =v

lo hi

lt gtlo hi

before

during

after

3-way partitioning



39

3-way quicksort:  visual trace

equal to partitioning element

Visual trace of quicksort with 3-way partitioning



40

Duplicate keys:  lower bound

Sorting lower bound.  If there are n distinct keys and the ith one occurs

xi times, any compare-based sorting algorithm must use at least

compares in the worst case.

Proposition.  [Sedgewick-Bentley, 1997]

Quicksort with 3-way partitioning is entropy-optimal. 

Pf.  [beyond scope of course] 

Bottom line.  Randomized quicksort with 3-way partitioning reduces 

running time from linearithmic to linear in broad class of applications.

N lg N when all distinct;
linear when only a constant number of distinct keys

proportional to lower bound

lg
�

N !
x1! x2! · · · xn!

⇥
⇤ �

n⇤

i=1

xi lg
xi

N



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3  QUICKSORT



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3  QUICKSORT



Sorting algorithms are essential in a broad variety of applications:

・Sort a list of names.

・Organize an MP3 library.

・Display Google PageRank results.

・List RSS feed in reverse chronological order.

・Find the median. 

・Identify statistical outliers.

・Binary search in a database.

・Find duplicates in a mailing list.

・Data compression.

・Computer graphics. 

・Computational biology.

・Load balancing on a parallel computer.

. . .
43

obvious applications

problems become easy once items
are in sorted order

non-obvious applications

Sorting applications



44

Java system sorts

Arrays.sort().

・Has different method for each primitive type.

・Has a method for data types that implement Comparable.

・Has a method that uses a Comparator.

・Uses tuned quicksort for primitive types; tuned mergesort for objects.

Q.  Why use different algorithms for primitive and reference types?

 import java.util.Arrays;

 public class StringSort
 {
    public static void main(String[] args)
    {
       String[] a = StdIn.readStrings()); 
       Arrays.sort(a);
       for (int i = 0; i < N; i++) 
          StdOut.println(a[i]);
    }
 }



45

War story (C qsort function)

AT&T Bell Labs (1991).  Allan Wilks and Rick Becker discovered that a 

qsort() call that should have taken seconds was taking minutes.

At the time, almost all qsort() implementations based on those in:

・Version 7 Unix (1979):  quadratic time to sort organ-pipe arrays.

・BSD Unix (1983):  quadratic time to sort random arrays of 0s and 1s.

Why is qsort() so slow?



Basic algorithm = quicksort.

・Cutoff to insertion sort for small subarrays.

・Partitioning scheme:  Bentley-McIlroy 3-way partitioning.

・Partitioning item.

– small arrays:  middle entry

– medium arrays:  median of 3

– large arrays: Tukey's ninther  [next slide]

Now widely used.  C, C++, Java 6, ….
46

Engineering a system sort

SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 23(11), 1249–1265 (NOVEMBER 1993)

Engineering a Sort Function

JON L. BENTLEY
M. DOUGLAS McILROY

AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.S.A.

SUMMARY
We recount the history of a new qsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

KEY WORDS Quicksort Sorting algorithms Performance tuning Algorithm design and implementation Testing

INTRODUCTION
C libraries have long included a qsort function to sort an array, usually implemented by
Hoare’s Quicksort.1 Because existing qsorts are flawed, we built a new one. This paper
summarizes its evolution.
Compared to existing library sorts, our new qsort is faster—typically about twice as

fast—clearer, and more robust under nonrandom inputs. It uses some standard Quicksort
tricks, abandons others, and introduces some new tricks of its own. Our approach to build-
ing a qsort is relevant to engineering other algorithms.
The qsort on our home system, based on Scowen’s ‘Quickersort’,2 had served faith-

fully since Lee McMahon wrote it almost two decades ago. Shipped with the landmark Sev-
enth Edition Unix System,3 it became a model for other qsorts. Yet in the summer of
1991 our colleagues Allan Wilks and Rick Becker found that a qsort run that should have
taken a few minutes was chewing up hours of CPU time. Had they not interrupted it, it
would have gone on for weeks.4 They found that it took n 2 comparisons to sort an ‘organ-
pipe’ array of 2n integers: 123..nn.. 321.
Shopping around for a better qsort, we found that a qsort written at Berkeley in 1983

would consume quadratic time on arrays that contain a few elements repeated many
times—in particular arrays of random zeros and ones.5 In fact, among a dozen different
Unix libraries we found no qsort that could not easily be driven to quadratic behavior; all
were derived from the Seventh Edition or from the 1983 Berkeley function. The Seventh

0038-0644/93/111249–17$13.50 Received 21 August 1992
 1993 by John Wiley & Sons, Ltd. Revised 10 May 1993



47

Tukey's ninther

Tukey's ninther.  Median of the median of 3 samples, each of 3 entries.

・Approximates the median of 9.

・Uses at most 12 compares.

Q.  Why use Tukey's ninther?

A.  Better partitioning than random shuffle and less costly.

LR A P M C AG X JK R BZ E

A MR X KG J EB

K EM

Kninther

medians

groups of 3

nine evenly
spaced entries

R J



48

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Q.  Based on all this research, Java’s system sort is solid, right?

A.  No: a killer input.

・Overflows function call stack in Java and crashes program.

・Would take quadratic time if it didn’t crash first.

% more 250000.txt
0
218750
222662
11
166672
247070
83339
...

% java IntegerSort 250000 < 250000.txt
Exception in thread "main" 
java.lang.StackOverflowError
   at java.util.Arrays.sort1(Arrays.java:562)
   at java.util.Arrays.sort1(Arrays.java:606)
   at java.util.Arrays.sort1(Arrays.java:608)
   at java.util.Arrays.sort1(Arrays.java:608)
   at java.util.Arrays.sort1(Arrays.java:608)
   ...

Java's sorting library crashes, even if
you give it as much stack space as Windows allows

250,000 integers
between 0 and 250,000



49

System sort: Which algorithm to use?

Many sorting algorithms to choose from:

Internal sorts.

・Insertion sort, selection sort, bubblesort, shaker sort.

・Quicksort, mergesort, heapsort, samplesort, shellsort.

・Solitaire sort, red-black sort, splaysort, Yaroslavskiy sort, psort, ...

External sorts.  Poly-phase mergesort, cascade-merge, oscillating sort.

String/radix sorts.  Distribution, MSD, LSD, 3-way string quicksort.

Parallel sorts.

・Bitonic sort, Batcher even-odd sort.

・Smooth sort, cube sort, column sort.

・GPUsort.



50

System sort: Which algorithm to use?

Applications have diverse attributes.

・Stable?

・Parallel?

・Deterministic?

・Keys all distinct?

・Multiple key types?

・Linked list or arrays?

・Large or small items?

・Is your array randomly ordered?

・Need guaranteed performance?

Elementary sort may be method of choice for some combination.

Cannot cover all combinations of attributes.

Q.  Is the system sort good enough?

A.  Usually.

many more combinations of
attributes than algorithms



51

Sorting summary

inplace? stable? worst average best remarks

selection

insertion

shell

merge

quick

3-way quick

???

✔ N 2 / 2 N 2 / 2 N 2 / 2 N exchanges

✔ ✔ N 2 / 2 N 2 / 4 N use for small N or partially ordered

✔ ? ? N tight code, subquadratic

✔ N lg N N lg N N lg N N log N  guarantee, stable

✔ N 2 / 2 2 N ln N N lg N
N log N  probabilistic guarantee

fastest in practice

✔ N 2 / 2 2 N ln N N
improves quicksort in presence

of duplicate keys

✔ ✔ N lg N N lg N N holy sorting grail



http://algs4.cs.princeton.edu

ROBERT SEDGEWICK  |  KEVIN WAYNE

Algorithms

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts

2.3  QUICKSORT



ROBERT SEDGEWICK  |  KEVIN WAYNE

F O U R T H  E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK  |  KEVIN WAYNE

2.3  QUICKSORT

‣ quicksort

‣ selection

‣ duplicate keys

‣ system sorts


