
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

2.1 ELEMENTARY SORTS

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

Ex. Student records in a university.

Sort. Rearrange array of N items into ascending order.

3

Sorting problem

item

key

Chen 3 A 991-878-4944 308 Blair

Rohde 2 A 232-343-5555 343 Forbes

Gazsi 4 B 766-093-9873 101 Brown

Furia 1 A 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

Goal. Sort any type of data.

Ex 1. Sort random real numbers in ascending order.

% java Experiment 10

0.08614716385210452

0.09054270895414829

0.10708746304898642

0.21166190071646818

0.363292849257276

0.460954145685913

0.5340026311350087

0.7216129793703496

0.9003500354411443

0.9293994908845686

public class Experiment
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 Insertion.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
}

4

Sample sort client 1

seems artificial, but stay tuned for an application

Goal. Sort any type of data.

Ex 2. Sort strings from file in alphabetical order.

5

Sample sort client 2

public class StringSorter
{
 public static void main(String[] args)
 {
 String[] a = In.readStrings(args[0]);
 Insertion.sort(a);
 for (int i = 0; i < a.length; i++)
 StdOut.println(a[i]);
 }
}

% more words3.txt

bed bug dad yet zoo ... all bad yes

% java StringSorter words3.txt

all bad bed bug dad ... yes yet zoo

Goal. Sort any type of data.

Ex 3. Sort the files in a given directory by filename.

6

% java FileSorter .

Insertion.class

Insertion.java

InsertionX.class

InsertionX.java

Selection.class

Selection.java

Shell.class

Shell.java

ShellX.class

ShellX.java

Sample sort client 3

import java.io.File;
public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

7

Callbacks

Goal. Sort any type of data.

Q. How can sort() know how to compare data of type Double, String, and

java.io.File without any information about the type of an item's key?

Callback = reference to executable code.

・Client passes array of objects to sort() function.

・The sort() function calls back object's compareTo() method as needed.

Implementing callbacks.

・Java: interfaces.

・C: function pointers.

・C++: class-type functors.

・C#: delegates.

・Python, Perl, ML, Javascript: first-class functions.

Callbacks: roadmap

8

client

import java.io.File;
public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

sort implementation

key point: no dependence
on File data type

public static void sort(Comparable[] a)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j].compareTo(a[j-1]) < 0)
 exch(a, j, j-1);
 else break;
}

object implementation

public class File
implements Comparable<File>
{
 ...
 public int compareTo(File b)
 {
 ...
 return -1;
 ...
 return +1;
 ...
 return 0;
 }
}

Comparable interface (built in to Java)

public interface Comparable<Item>
{
 public int compareTo(Item that);
}

A total order is a binary relation ≤ that satisfies:

・Antisymmetry: if v ≤ w and w ≤ v, then v = w.

・Transitivity: if v ≤ w and w ≤ x, then v ≤ x.

・Totality: either v ≤ w or w ≤ v or both.

Ex.

・Standard order for natural and real numbers.

・Chronological order for dates or times.

・Alphabetical order for strings.

・…

Surprising but true. The <= operator for double is not a total order. (!)
9

Total order

an intransitive relation
violates totality: (Double.NaN <= Double.NaN) is false

Implement compareTo() so that v.compareTo(w)

・Is a total order.

・Returns a negative integer, zero, or positive integer

if v is less than, equal to, or greater than w, respectively.

・Throws an exception if incompatible types (or either is null).

Built-in comparable types. Integer, Double, String, Date, File, ...

User-defined comparable types. Implement the Comparable interface.
10

Comparable API

greater than (return +1)

v

w

less than (return -1)

v

w

equal to (return 0)

v w

Date data type. Simplified version of java.util.Date.

public class Date implements Comparable<Date>
{
 private final int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date that)
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

11

Implementing the Comparable interface

only compare dates
to other dates

Helper functions. Refer to data through compares and exchanges.

Less. Is item v less than w ?

Exchange. Swap item in array a[] at index i with the one at index j.

12

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }

private static void exch(Comparable[] a, int i, int j)
{
 Comparable swap = a[i];
 a[i] = a[j];
 a[j] = swap;
}

Goal. Test if an array is sorted.

Q. If the sorting algorithm passes the test, did it correctly sort the array?

A.

13

Testing

private static boolean isSorted(Comparable[] a)
{
 for (int i = 1; i < a.length; i++)
 if (less(a[i], a[i-1])) return false;
 return true;
}

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

・In iteration i, find index min of smallest remaining entry.

・Swap a[i] and a[min].

Selection sort demo

16

initial

17

Selection sort

Algorithm. ↑ scans from left to right.

Invariants.

・Entries the left of ↑ (including ↑) fixed and in ascending order.

・No entry to right of ↑ is smaller than any entry to the left of ↑.

in final order ↑

18

Selection sort inner loop

To maintain algorithm invariants:

・Move the pointer to the right.

・Identify index of minimum entry on right.

・Exchange into position.

i++;

↑in final order

in final order
exch(a, i, min);

↑↑

int min = i;
for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;

↑↑in final order

19

Selection sort: Java implementation

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Selection sort: mathematical analysis

Proposition. Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ~ N 2 / 2 compares

and N exchanges.

Running time insensitive to input. Quadratic time, even if input is sorted.

Data movement is minimal. Linear number of exchanges.
20

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

Selection sort: animations

21

http://www.sorting-algorithms.com/selection-sort

20 random items

in final order

not in final order

algorithm position

Selection sort: animations

22

in final order

not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 partially-sorted items

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

・In iteration i, swap a[i] with each larger entry to its left.

・

Insertion sort demo

25

26

Insertion sort

Algorithm. ↑ scans from left to right.

Invariants.

・Entries to the left of ↑ (including ↑) are in ascending order.

・Entries to the right of ↑ have not yet been seen.

in order ↑ not yet seen

27

Insertion sort inner loop

To maintain algorithm invariants:

・Move the pointer to the right.

・Moving from right to left, exchange

a[i] with each larger entry to its left.

i++;

in order not yet seen

↑

for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;

in order not yet seen

↑↑↑↑

Insertion sort: Java implementation

28

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Proposition. To sort a randomly-ordered array with distinct keys,

insertion sort uses ~ ¼ N 2 compares and ~ ¼ N 2 exchanges on average.

Pf. Expect each entry to move halfway back.

Insertion sort: mathematical analysis

29

Trace of insertion sort (array contents just after each insertion)

 a[]
 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E
 2 1 O R S T E X A M P L E
 3 3 O R S T E X A M P L E
 4 0 E O R S T X A M P L E
 5 5 E O R S T X A M P L E
 6 0 A E O R S T X M P L E
 7 2 A E M O R S T X P L E
 8 4 A E M O P R S T X L E
 9 2 A E L M O P R S T X E
10 2 A E E L M O P R S T X

 A E E L M O P R S T X

entries in black
moved one position
right for insertion

entries in gray
do not move

entry in red
is a[j]

Insertion sort: trace

30

Insertion sort: animation

31

in order

not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

40 random items

Best case. If the array is in ascending order, insertion sort makes

N - 1 compares and 0 exchanges.

Worst case. If the array is in descending order (and no duplicates),

insertion sort makes ~ ½ N 2 compares and ~ ½ N 2 exchanges.

Insertion sort: best and worst case

32

 X T S R P O M L E E A

 A E E L M O P R S T X

Insertion sort: animation

33

http://www.sorting-algorithms.com/insertion-sort

40 reverse-sorted items

in order

not yet seen

algorithm position

Def. An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is ≤ c N.

・Ex 1. A subarray of size 10 appended to a sorted subarray of size N.

・Ex 2. An array of size N with only 10 entries out of place.

Proposition. For partially-sorted arrays, insertion sort runs in linear time.

Pf. Number of exchanges equals the number of inversions.

Insertion sort: partially-sorted arrays

34

 A E E L M O T R X P S

T-R T-P T-S R-P X-P X-S

(6 inversions)

number of compares = exchanges + (N – 1)

Insertion sort: animation

35

http://www.sorting-algorithms.com/insertion-sort

40 partially-sorted items

in order

not yet seen

algorithm position

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

Idea. Move entries more than one position at a time by h-sorting the array.

Shellsort. [Shell 1959] h-sort array for decreasing sequence of values of h.

Shellsort overview

an h-sorted array is h interleaved sorted subsequences

38

L E E A M H L E P S O L T S X R
L M P T
 E H S S
 E L O X
 A E L R

P H E L L S O R T E X A M S L E
P S
 H L
 E E
 L
 L

h = 4

h = 13

An h-sorted file is h interleaved sorted files

(8 additional files of size 1)

Shellsort trace (array contents after each pass)

P H E L L S O R T E X A M S L E

A E E E H L L L M O P R S S T X

L E E A M H L E P S O L T S X R

S H E L L S O R T E X A M P L Einput

13-sort

4-sort

1-sort

How to h-sort an array? Insertion sort, with stride length h.

Why insertion sort?

・Big increments ⇒ small subarray.

・Small increments ⇒ nearly in order. [stay tuned]

h-sorting

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sorting an array

39

Shellsort example: increments 7, 3, 1

S O R T E X A M P L E

input

S O R T E X A M P L E
M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T

7-sort

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sort

A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L O P M S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P S X R T
A E E L M O P R S X T
A E E L M O P R S T X

1-sort

A E E L M O P R S T X

result

40

41

Shellsort: intuition

Proposition. A g-sorted array remains g-sorted after h-sorting it.

Challenge. Prove this fact—it's more subtle than you'd think!

M O L E E X A S P R T
E O L M E X A S P R T
E E L M O X A S P R T
E E L M O X A S P R T
A E L E O X M S P R T
A E L E O X M S P R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T
A E L E O P M S X R T

3-sort

still 7-sorted

S O R T E X A M P L E
M O R T E X A S P L E
M O R T E X A S P L E
M O L T E X A S P R E
M O L E E X A S P R T

7-sort

Shellsort: which increment sequence to use?

Powers of two. 1, 2, 4, 8, 16, 32, ...

No.

Powers of two minus one. 1, 3, 7, 15, 31, 63, …

Maybe.

3x + 1. 1, 4, 13, 40, 121, 364, …

OK. Easy to compute.

Sedgewick. 1, 5, 19, 41, 109, 209, 505, 929, 2161, 3905, …

Good. Tough to beat in empirical studies.

42

merging of (9 ⨉ 4i) – (9 ⨉ 2i) + 1

and 4i – (3 ⨉ 2i) + 1

public class Shell
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;

 int h = 1;
 while (h < N/3) h = 3*h + 1; // 1, 4, 13, 40, 121, 364, ...

 while (h >= 1)
 { // h-sort the array.
 for (int i = h; i < N; i++)
 {
 for (int j = i; j >= h && less(a[j], a[j-h]); j -= h)
 exch(a, j, j-h);
 }

 h = h/3;
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }
 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Shellsort: Java implementation

43

insertion sort

3x+1 increment
sequence

move to next
increment

Shellsort: visual trace

44

Visual trace of shellsort

input

40-sorted

13-sorted

4-sorted

result

Shellsort: animation

45

h-sorted

current subsequence

algorithm position

50 random items

other elementshttp://www.sorting-algorithms.com/shell-sort

Shellsort: animation

46

http://www.sorting-algorithms.com/shell-sort

50 partially-sorted items

h-sorted

current subsequence

algorithm position

other elements

Proposition. The worst-case number of compares used by shellsort with

the 3x+1 increments is O(N 3/2).

Property. Number of compares used by shellsort with the 3x+1 increments

is at most by a small multiple of N times the # of increments used.

Remark. Accurate model has not yet been discovered (!)
47

Shellsort: analysis

measured in thousands

N compares N1.289 2.5 N lg N

5,000 93 58 106

10,000 209 143 230

20,000 467 349 495

40,000 1022 855 1059

80,000 2266 2089 2257

Why are we interested in shellsort?

Example of simple idea leading to substantial performance gains.

Useful in practice.

・Fast unless array size is huge (used for small subarrays).

・Tiny, fixed footprint for code (used in some embedded systems).

・Hardware sort prototype.

Simple algorithm, nontrivial performance, interesting questions.

・Asymptotic growth rate?

・Best sequence of increments?

・Average-case performance?

Lesson. Some good algorithms are still waiting discovery.

48

open problem: find a better increment sequence

bzip2, /linux/kernel/groups.c

uClibc

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

Goal. Rearrange array so that result is a uniformly random permutation.

How to shuffle an array

51

Goal. Rearrange array so that result is a uniformly random permutation.

How to shuffle an array

52

・Generate a random real number for each array entry.

・Sort the array.

Shuffle sort

53

0.14190.1576 0.42180.48540.8003 0.9157 0.95720.96490.9706

useful for shuffling
columns in a spreadsheet

・Generate a random real number for each array entry.

・Sort the array.

Shuffle sort

54

0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706

useful for shuffling
columns in a spreadsheet

・Generate a random real number for each array entry.

・Sort the array.

Proposition. Shuffle sort produces a uniformly random permutation

of the input array, provided no duplicate values.

Shuffle sort

55

0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706

assuming real numbers
uniformly at random

useful for shuffling
columns in a spreadsheet

Microsoft antitrust probe by EU. Microsoft agreed to provide a randomized

ballot screen for users to select browser in Windows 7.

56

War story (Microsoft)

http://www.browserchoice.eu

appeared last
50% of the time

Microsoft antitrust probe by EU. Microsoft agreed to provide a randomized

ballot screen for users to select browser in Windows 7.

Solution? Implement shuffle sort by making comparator always return a

random answer.

57

War story (Microsoft)

 function RandomSort (a,b)
 {
 return (0.5 - Math.random());
 }

Microsoft's implementation in Javascript
 public int compareTo(Browser that)
 {
 double r = Math.random();
 if (r < 0.5) return -1;
 if (r > 0.5) return +1;
 return 0;
 }

browser comparator
(should implement a total order)

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle demo

58

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Proposition. [Fisher-Yates 1938] Knuth shuffling algorithm produces a

uniformly random permutation of the input array in linear time.

Knuth shuffle

59

assuming integers
uniformly at random

・In iteration i, pick integer r between 0 and i uniformly at random.

・Swap a[i] and a[r].

Knuth shuffle

60

between 0 and i

public class StdRandom
{
 ...
 public static void shuffle(Object[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int r = StdRandom.uniform(i + 1);
 exch(a, i, r);
 }
 }
}

common bug: between 0 and N – 1
correct variant: between i and N – 1

Texas hold'em poker. Software must shuffle electronic cards.

War story (online poker)

61

How We Learned to Cheat at Online Poker: A Study in Software Security
http://www.datamation.com/entdev/article.php/616221

Bug 1. Random number r never 52 ⇒ 52nd card can't end up in 52nd place.

Bug 2. Shuffle not uniform (should be between 1 and i).

Bug 3. random() uses 32-bit seed ⇒ 232 possible shuffles.

Bug 4. Seed = milliseconds since midnight ⇒ 86.4 million shuffles.

Exploit. After seeing 5 cards and synchronizing with server clock,

can determine all future cards in real time.

War story (online poker)

62

 for i := 1 to 52 do begin
 r := random(51) + 1;
 swap := card[r];
 card[r] := card[i];
 card[i] := swap;
 end;

between 1 and 51

Shuffling algorithm in FAQ at www.planetpoker.com

“ The generation of random numbers is too important to be left to chance. ”

 — Robert R. Coveyou

Best practices for shuffling (if your business depends on it).

・Use a hardware random-number generator that has passed both

the FIPS 140-2 and the NIST statistical test suites.

・Continuously monitor statistic properties:

hardware random-number generators are fragile and fail silently.

・Use an unbiased shuffling algorithm.

Bottom line. Shuffling a deck of cards is hard!

War story (online poker)

63

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

The convex hull of a set of N points is the smallest perimeter fence

enclosing the points.

Equivalent definitions.

・Smallest convex set containing all the points.

・Smallest area convex polygon enclosing the points.

・Convex polygon enclosing the points, whose vertices are points in set.
66

Convex hull

67

Convex hull

The convex hull of a set of N points is the smallest perimeter fence

enclosing the points.

Convex hull output. Sequence of vertices in counterclockwise order.

vertex

on convex hull boundary,
but not vertices

68

Convex hull: mechanical algorithm

Mechanical algorithm. Hammer nails perpendicular to plane; stretch elastic

rubber band around points.

http://www.idlcoyote.com/math_tips/convexhull.html

Robot motion planning. Find shortest path in the plane from s to t
that avoids a polygonal obstacle.

Fact. Shortest path is either straight line from s to t or it is one of two

polygonal chains of convex hull.
69

Convex hull application: motion planning

s t
obstacle

70

Convex hull application: farthest pair

Farthest pair problem. Given N points in the plane, find a pair of points

with the largest Euclidean distance between them.

Fact. Farthest pair of points are extreme points on convex hull.

Fact. Can traverse the convex hull by making only counterclockwise turns.

Fact. The vertices of convex hull appear in increasing order of polar angle

with respect to point p with lowest y-coordinate.

71

Convex hull: geometric properties

1

p

3

4

5

67

8

9

10

1112

2

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard unless it create a ccw turn.

72

Graham scan demo

p

・Choose point p with smallest y-coordinate.

・Sort points by polar angle with p.

・Consider points in order; discard unless it create a ccw turn.

10

11
12

73

Graham scan demo

1

0

5

67

2

3

9

4

8

74

Graham scan: implementation challenges

Q. How to find point p with smallest y-coordinate?

A. Define a total order, comparing by y-coordinate. [next lecture]

Q. How to sort points by polar angle with respect to p ?

A. Define a total order for each point p. [next lecture]

Q. How to determine whether p1 → p2 → p3 is a counterclockwise turn?

A. Computational geometry. [next two slides]

Q. How to sort efficiently?

A. Mergesort sorts in N log N time. [next lecture]

Q. How to handle degeneracies (three or more points on a line)?

A. Requires some care, but not hard. [see booksite]

75

CCW. Given three points a, b, and c, is a → b → c a counterclockwise turn?

Lesson. Geometric primitives are tricky to implement.

・Dealing with degenerate cases.

・Coping with floating-point precision.

Implementing ccw

a

b

yes

a

c

no

c b

a

b

yes
(∞-slope)

a

b

no
(collinear)

b

a

no
(collinear)

a

c

no
(collinear)

c

c c b

is c to the left of the ray a→b

CCW. Given three points a, b, and c, is a → b → c a counterclockwise turn?

・Determinant (or cross product) gives 2x signed area of planar triangle.

・If signed area > 0, then a → b → c is counterclockwise.

・If signed area < 0, then a → b → c is clockwise.

・If signed area = 0, then a → b → c are collinear.

< 0> 0

76

Implementing ccw

€

2 × Area(a, b, c) =
ax ay 1
bx by 1
cx cy 1

= (bx − ax)(cy − ay) − (by − ay)(cx − ax)

(ax, ay)

(bx, by)

(cx, cy) (ax, ay)

(bx, by)

(cx, cy)

(b - a) × (c - a)

(ax, ay)

(cx, cy)

(bx, by)

= 0

counterclockwise clockwise collinear

77

Immutable point data type

public class Point2D
{
 private final double x;
 private final double y;

 public Point2D(double x, double y)
 {
 this.x = x;
 this.y = y;
 }

 ...

 public static int ccw(Point2D a, Point2D b, Point2D c)
 {
 double area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
 if (area2 < 0) return -1; // clockwise
 else if (area2 > 0) return +1; // counter-clockwise
 else return 0; // collinear
 }
}

danger of
floating-point
roundoff error

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

2.1 ELEMENTARY SORTS

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

2.1 ELEMENTARY SORTS

‣ rules of the game

‣ selection sort

‣ insertion sort

‣ shellsort

‣ shuffling

‣ convex hull

